Tree consistency and bounds on the performance of the max-product algorithm and its generalizations

نویسندگان

  • Martin J. Wainwright
  • Tommi S. Jaakkola
  • Alan S. Willsky
چکیده

Finding the maximum a posteriori (MAP) assignment of a discrete-state distribution specified by a graphical model requires solving an integer program. The max-product algorithm, also known as the max-plus or min-sum algorithm, is an iterative method for (approximately) solving such a problem on graphs with cycles. We provide a novel perspective on the algorithm, which is based on the idea of reparameterizing the distribution in terms of so-called pseudo-max-marginals on nodes and edges of the graph. This viewpoint provides conceptual insight into the max-product algorithm in application to graphs with cycles. First, we prove the existence of max-product fixed points for positive distributions on arbitrary graphs. Next, we show that the approximate max-marginals computed by max-product are guaranteed to be consistent, in a suitable sense to be defined, over every tree of the graph. We then turn to characterizing the nature of the approximation to the MAP assignment computed by maxproduct. We generalize previous work by showing that for any graph, the max-product assignment satisfies a particular optimality condition with respect to any subgraph containing at most one cycle per connected component. We use this optimality condition to derive upper bounds on the difference between the log probability of the true MAP assignment, and the log probability of a max-product assignment. Finally, we consider extensions of the max-product algorithm that operate over higherorder cliques, and show how our reparameterization analysis extends in a natural manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints

In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...

متن کامل

Separable programming problems with the max-product fuzzy relation equation constraints

In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of its feasible domain, respectively. Their combination produces the original optimal solution. The ...

متن کامل

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

Optimization of linear objective function subject to Fuzzy relation inequalities constraints with max-product composition

In this paper, we study the finitely many constraints of the fuzzyrelation inequality problem and optimize the linear objectivefunction on the region defined by the fuzzy max-product operator.Simplification operations have been given to accelerate theresolution of the problem by removing the components having noeffect on the solution process. Also, an algorithm and somenumerical and applied exa...

متن کامل

Reducing Hardware Complexity of Wallace Multiplier Using High Order Compressors Based on CNTFET

   Multiplier is one of the important components in many systems such as digital filters, digital processors and data encryption. Improving the speed and area of multipliers have impact on the performance of larger arithmetic circuits that are part of them. Wallace algorithm is one of the most famous architectures that uses a tree of half adders and full adders to increase the speed and red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2004